7 research outputs found

    An eco‐epidemiological modeling approach to investigate dilution effect in two different tick‐borne pathosystems

    Get PDF
    Disease (re)emergence appears to be driven by biodiversity decline and environmental change. As a result, it is increasingly important to study host-pathogen interactions within the context of their ecology and evolution. The dilution effect is the concept that higher biodiversity decreases pathogen transmission. It has been observed especially in zoonotic vector-borne pathosystems, yet evidence against it has been found. In particular, it is still debated how the community (dis)assembly assumptions and the degree of generalism of vectors and pathogens affect the direction of the biodiversity-pathogen transmission relationship. The aim of this study was to use empirical data and mechanistic models to investigate dilution mechanisms in two rodent-tick-pathogen systems differing in their vector degree of generalism. A community was assembled to include ecological interactions that expand from purely additive to purely substitutive. Such systems are excellent candidates to analyze the link between vector ecology, community (dis)assembly dynamics, and pathogen transmission. To base our mechanistic models on empirical data, rodent live-trapping, including tick sampling, was conducted in Wales across two seasons for three consecutive years. We have developed a deterministic single-vector, multi-host compartmental model that includes ecological relationships with non-host species, uniquely integrating theoretical and observational approaches. To describe pathogen transmission across a gradient of community diversity, the model was populated with parameters describing five different scenarios differing in ecological complexity; each based around one of the pathosystems: Ixodes ricinus (generalist tick) - Borrelia burgdorferi and I. trianguliceps (small mammals specialist tick) - Babesia microti. The results suggested that community composition and inter-specific dynamics affected pathogen transmission with different dilution outcomes depending on the vector degree of generalism. The model provides evidence that dilution and amplification effects are not mutually exclusive in the same community, but depend on vector ecology and the epidemiological output considered (i.e. the “risk” of interest). In our scenarios, more functionally diverse communities resulted in fewer infectious rodents, supporting the dilution effect. In the pathosystem with generalist vector we identified a hump shaped relationship between diversity and infections in hosts, while for that characterized by specialist tick, this relationship was more complex and more dependent upon specific parameter values

    The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

    Get PDF
    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence

    Bayesian linear size-and-shape regression with applications to face data

    Get PDF
    Regression models for size-and-shape analysis are developed, where the model is specified in the Euclidean space of the landmark coordinates. Statistical models in this space (which is known as the top space or ambient space) are often easier for practitioners to understand than alternative models in the quotient space of size-and-shapes. We consider a Bayesian linear size-and-shape regression model in which the response variable is given by labelled configuration matrix, and the covariates represent quantities such as gender and age. It is important to parameterize the model so that it is identifiable, and we use the LQ decomposition in the intercept term in the model for this purpose. Gamma priors for the inverse variance of the error term, matrix Fisher priors for the random rotation matrix, and flat priors for the regression coefficients are used. Markov chain Monte Carlo algorithms are used for sampling from the posterior distribution, in particular by using combinations of Metropolis-Hastings updates and a Gibbs sampler.The proposed Bayesian methodology is illustrated with an application to forensic facial data in three dimensions, where we investigate the main changes in growth by describing relative movements of landmarks for each gender over time

    Shape curves and geodesic modelling

    No full text
    A family of shape curves is introduced that is useful for modelling the changes in shape in a series of geometrical objects. The relationship between the preshape sphere and the shape space is used to define a general family of curves based on horizontal geodesics on the preshape sphere. Methods for fitting geodesics and more general curves in the non-Euclidean shape space of point sets are discussed, based on minimizing sums of squares of Procrustes distances. Likelihood-based inference is considered. We illustrate the ideas by carrying out statistical analysis of two-dimensional landmarks on rats' skulls at various times in their development and three-dimensional landmarks on lumbar vertebrae from three primate species. Copyright 2010, Oxford University Press.

    The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

    No full text
    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence
    corecore